Table of Contents
  0:00 Recap 
  0:40 A simple example (more in the practicals) 
  3:44 Pytorch tensor: requires_grad field 
  6:44 Pytorch backward function 
  9:05 The chain rule on our example 
  16:00 Linear regression 
  18:00 Gradient descent with numpy... 
  27:30 ... with pytorch tensors 
  31:30 Using autograd 
  34:35 Using a neural network (linear layer) 
  39:50 Using a pytorch optimizer 
  44:00 algorithm: how automatic differentiation works 
Automatic differentiation: a simple example static notebook, code (GitHub) in colab
notebook used in the video for the linear regression. If you want to open it in colab
backprop slide (used for the practical below)
To check your understanding of automatic differentiation, you can do the quizzes

practicals in colab Coding backprop.
Adapt your code to solve the following challenge:

Some small modifications:
First modification: we now generate points where , i.e is obtained by applying a deterministic function to with parameters and . Our goal is still to recover the parameters and from the observations .
Second modification: we now generate points where , i.e is obtained by applying a deterministic function to with parameters , and . Our goal is still to recover the parameters from the observations .