Table of Contents
0:00 Recap
0:15 Presentation of GANs
1:49 GAN learning
4:13 Learning the discriminator
6:16 Learning the generator
7:25 A trick for learning the generator
10:00 GAN for 2d-point clouds
11:51 Training loop in PyTorch
15:08 Loss curves
16:12 Generation with GANs
17:15 Mode collapse
20:00 Conditional GAN
21:15 InfoGAN
22:54 Deep convolutional GAN
25:45 Practicals
28:38 Non convergence for GANs
33:00 Coding a conditional GAN
39:13 Coding an InfoGAN
43:35 Examples of failures