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Geometric deep learning

(Bronstein et al., 2017) 1



Geometric deep learning

https://geometricdeeplearning.com/

In this talk : Symmetries in Machine Learning

What can be done when trying to learn a task that is known to be invariant
to some group of symmetries ?
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Invariance and Equivariance

source : image from Bernhard Kainz
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Why Invariance and Equivariance?
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Why Invariance and Equivariance?

taken from Zhang (2019)
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How to make your algorithm invariant

Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.

From an arbitrary function f , an easy way to construct an invariant version :
1
|T|
∑
t∈T

f (T(I))

so that the learned function fθ is such that

fθ(T(I)) ≈ fθ(I)
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Convolutions from �rst principles

How to build an equivariant layer ?

Th : Shift equivariance + Linear = Convolution

more details at : https:
//dataflowr.github.io/website/modules/extras/Convolutions_first/

Pb with practical CNN : max pooling breaks the equivariance property.
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Expressive power of CNNs

To learn a function f that is known to be invariant to some symmetries, we
use linear layers that respect this symmetry. Can such a network
approximate an arbitrary continuous invariant function?

(Yarotsky, 2021)
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Summary for CNNs

• Symmetries in ML : Invariance and Equivariance
• for CNNs, using equivariant layers does not restrict the Expressive
Power of the network
• in practice, architectures are not invariant and we use other techniques
like data augmentation...
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Learning with point clouds : PointNet

(Qi et al., 2017)
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PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(x1, . . . , xn) 7→ (f (x1), . . . , f (xn))

It is equivariant as
PointNet(xσ(1), . . . , xσ(n)) =

(
f (xσ(1)), . . . , f (xσ(n))

)
for any permutation

σ ∈ Sn.

For n = 2, whatever f , you cannot approximate the following equivariant
function :
(x1, x2) 7→

( x1+x2
2 , x1+x22

)
Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :
(x1, . . . , xn) 7→

(
f (x1,

∑
i Φ(xi), . . . , f (xn,

∑
i Φ(xi))

)
(Zaheer et al., 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/
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Learning with graph symmetries



Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !
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Graph isomorphism

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection V1 −→ V2
which preserves edges.

Idea : design a machine learning algorithm whose result does not depend
on the representation of the input.
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Invariant and Equivariant GNNs



Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).
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Practical GNNs are not universal



A �rst example : Message passing GNN (MGNN)

MGNN takes as input a discrete graph G = (V, E) with n nodes and are
de�ned inductively as : h`i ∈ F being the features at layer ` associated with
node i, then

h`+1i = f
(
h`i ,
{{
h`j
}}

j∼i

)
= f0

h`i ,∑
j∼i

f1
(
h`j
) ,

where f or f0 and f1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f , there exists f0 and f1).
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Xu et al. (2019) : MGNN are as powerful as 2-Weisfeiler-Lehman

For k ≥ 2, k-WL(G) are invariants based on the Weisfeiler-Lehman tests
designed for the graph isomorphism problem.
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MGNN are not universal

Prop : MGNN are useless on d-regular graphs (without features).

Another example of a problematic pair for MGNN :
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Learning with (practical i.e. k = 2) FGNN



Better expressive power with FGNN

(Maron et al., 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h`+1i→j = f0

(
h`i→j,

∑
k∈V

f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a �nal invariant/equivariant
reduction layer from Fn

2
to F/Fn.
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Properties of Folklore GNN (FGNN)

Separation (Maron et al., 2019) : FGL is equivariant and the same power of
separation as 3-WL.

Expressiveness (Azizian and Lelarge, 2020) :
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

Proof : from separation to approximation via a Stone-Weierstrass theorem
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Alignment of Graphs



Problem : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on
the right).
Task : recover the indices on vertices of graph 2.
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).
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Result with FGNN

Here are the ’wrong’ matchings or cycles.
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Result with FGNN

Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.
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Result with FGNN

Matched edges.
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Result with FGNN

Green vertices are well paired vertices. Red vertices are errors.
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A learning algorithm



Learning the graph alignment problem with Siamese FGNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

FGNN

FGNN

• The same FGNN is used for both graphs.
• From the node similarity matrix E1ET2 , we extract a mapping from nodes
of G1 to nodes of G2 (using a LAP solver to get a permutation).
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Results on synthetic data

• Graphs : n = 50, density = 0.2
• Training set : 20000 samples
• Validation and Test sets : 1000 samples
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Comparison FGNN vs GRAMPA

Overlap as a function of σ =
√

1−s
1−λ/n for correlated E-R with average degree

50 (number of nodes : 100). Fan et al. (2019)

29



Generalization for regular graphs

Each line corresponds to a model trained at a given noise level and shows
its accuracy across all noise levels.
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Conclusion

• we can deal with symmetries in ML thanks to invariance and
equivariance
• images : geometric invariants - graphs : combinatorial invariants

• when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants
• as a result, we lower the expressive power of our network and practical
GNNs are not universal
• other applications of GNNs in graph theory, combinatorial optimization...
• Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness !
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Thank You!
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