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Geometric deep learning

GEOMETRIC DEEP LEARNING

https://geometricdeeplearning.com/
In this talk : Symmetries in Machine Learning

What can be done when trying to learn a task that is known to be invariant
to some group of symmetries?
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Invariance and Equivariance
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Why Invariance and Equivariance?

Example classifications
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Why Invariance and Equivariance?

Deep Networks are not Shift-Invariant

46.3 18.0

P(correct class) P(correct class)

Azulay and Weiss. Why do deep convolutional networks generalize so poorly to small image transformations? In ArXiv, 2018.
Engstrom, Tsipras, Schmidt, Madry. Exploring the Landscape of Spatial Robustness. In ICML, 2019,

taken from Zhang (2019)



How to make your algorithm invariant

Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.
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Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.
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Convolutions from first principles

How to build an equivariant layer?
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Convolutions from first principles

How to build an equivariant layer?
Th: Shift equivariance + Linear = Convolution
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Convolutions from first principles

How to build an equivariant layer?
Th: Shift equivariance + Linear = Convolution

more details at : https:

//dataflowr.github.io/website/modules/extras/Convolutions_first/

Pb with practical CNN : max pooling breaks the equivariance property.
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Expressive power of CNNs

To learn a function f that is known to be invariant to some symmetries, we
use linear layers that respect this symmetry. Can such a network
approximate an arbitrary continuous invariant function?



Expressive power of CNNs

To learn a function f that is known to be invariant to some symmetries, we
use linear layers that respect this symmetry. Can such a network
approximate an arbitrary continuous invariant function?

Universal approximations of invariant maps
by neural networks

Dmitry Yarotsky*!
d.yarotsky@skoltech.ru

Abstract

We describe generalizations of the universal approximation theorem for neural
networks to maps invariant or equivariant with respect to linear representations of
groups. OQur goal is to establish network-like computational models that are both in-
variant /equivariant and provably complete in the sense of their ability to approximate
any continuous invariant/equivariant map. Our contribution is three-fold. First, in

(Yarotsky, 2021)



Summary for CNNs

e Symmetries in ML : Invariance and Equivariance

e for CNNs, using equivariant layers does not restrict the Expressive
Power of the network

e in practice, architectures are not invariant and we use other techniques
like data augmentation...



Learning with point clouds : PointNet
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Learning with point clouds : PointNet

l— PointNet —l
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(Qi et al,, 2017)



PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(X, ..., Xn) — (f(X1),-..,f(Xn))
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PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(X, ..., Xn) — (f(X1),-..,f(Xn))

It is equivariant as
PointNet(Xo (), - - -, Xo(n)) = (f(Xo()), - - -, f (Xo(my)) fOr any permutation
o€ Sn.

For n = 2, whatever f, you cannot approximate the following equivariant
function :

(X1,X2) — (Xr:Xz’ X1+X2)

2
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PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(X, ..., Xn) — (f(X1),-..,f(Xn))

It is equivariant as
PointNet(Xo (), - - -, Xo(n)) = (f(Xo()), - - -, f (Xo(my)) fOr any permutation
o€ Sn.

For n = 2, whatever f, you cannot approximate the following equivariant
function :

(0, 3) - (2, 2133

Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :

(X17 s 7X”) =2 (f(X%Ziq)(Xi)v s 7f(X”v Zid)(xi)))

(zaheer et al, 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/
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Learning with graph symmetries



Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
BaX1 + - - - 4+ Baxn from noisy observations (X, y).

Q: How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (X:,...,Xn)?
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Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
BaX1 + - - - 4+ Baxn from noisy observations (X, y).

Q: How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (X:,...,Xn)?

A: there is only one parameter to estimate because invariance implies
Bi=---= B

Q: a linear regression on graphs : estimate a linear function of the adjacency
matrix in R™" how many parameters to estimate?

A: there are only two parameters to estimate for a linear function
f:R™" — Rinvariant to permutation of the rows and columns :

fAY=ad Aj+B> Ay,
i=j i#j

whatever the value of n!



Graph isomorphism

G, = (V4,E7) and G, = (W, E;) are isomorphic if there is a bijection V4 — V,
which preserves edges.
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Graph isomorphism

G, = (V4,E7) and G, = (W, E;) are isomorphic if there is a bijection V4 — V,
which preserves edges.
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Idea: design a machine learning algorithm whose result does not depend
on the representation of the input.



Invariant and Equivariant GNNs




Invariant and equivariant functions

For a permutation o € Sy, we define (F = RP feature space) :

o for X € F", (0 x X)) = X
o for G € F™", (0 % G) y(iy),o(iy) = G

I1,12



Invariant and equivariant functions

For a permutation o € Sy, we define (F = RP feature space) :

o for X € F", (0 x X)) = X
o for G € F™", (0 % G) y(iy),o(iy) = G

I1,12

G,, G, are isomorphic iff G; = o x G,.



Invariant and equivariant functions

For a permutation o € Sy, we define (F = RP feature space) :
e forX e ]Fn, (O’*X)U(,‘) = X,'
e forGe ann, (O’ * G)(,(,'1)7(,(,‘2) = G,'h,'2

G,, G, are isomorphic iff G; = o x G,.

Definition
(R=10rk=2)

Afunction f : F™ — I is said to be invariant if f(o * G) = f(G).
A function f : F™ 5 F" is said to be equivariant if f(o x G) = o % f(G).



Practical GNNs are not universal




A first example : Message passing GNN (MGNN)
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MGNN takes as input a discrete graph G = (V, E) with n nodes and are
defined inductively as : hf € TF being the features at layer £ associated with
node i, then

s (. {),.) =5 (4.5 0))

where f or fo and f; are learnable functions.



A first example : Message passing GNN (MGNN)
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MGNN takes as input a discrete graph G = (V, E) with n nodes and are
defined inductively as : hf € TF being the features at layer £ associated with
node i, then

s (. {),.) =5 (4.5 0))

where f or fo and f; are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f, there exists fo and f3).



Xu et al. (2019) : MGNN are as powerful as 2-Weisfeiler-Lehman

For kR > 2, R-WL(G) are invariants based on the Weisfeiler-Lehman tests
designed for the graph isomorphism problem.

Step 1: generate signature strings.  Step 2: sort signature strings and recolor.



MGNN are not universal

Prop : MGNN are useless on d-regular graphs (without features).

Another example of a problematic pair for MGNN :

(o4



Learning with (practical i.e. k = 2) FGNN




Better expressive power with FGNN

(Maron et al.,, 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h,[:] - ( I—>}7Zf1 ( l—>k> f'-’ (hk—>;>> 5
kev
where fo, f and f, are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a final invariant/equivariant
reduction layer from F" to F/F".



Properties of Folklore GNN (FGNN)

Separation (Maron et al., 2019) : FGL is equivariant and the same power of
separation as 3-WL.

Expressiveness (Azizian and Lelarge, 2020) :
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

Proof : from separation to approximation via a Stone-Weierstrass theorem



Alignment of Graphs




Problem : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on

the right).
Task : recover the indices on vertices of graph 2.

20



Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).
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Result with FGNN

Here are the 'wrong’ matchings or cycles.
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Result with FGNN

Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.

2



Result with FGNN

Matched edges.
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Result with FGNN

Green vertices are well paired vertices. Red vertices are errors.

26



A learning algorithm




Learning the graph alignment problem with Siamese FGNNs

G, € {o,1}" W, F g Rnxb
E.E] ¢ R"

G, € {o,1}" N, F, e R"XD

e The same FGNN is used for both graphs.

e From the node similarity matrix E,E], we extract a mapping from nodes
of G, to nodes of G, (using a LAP solver to get a permutation).

27



Results on synthetic data

Erd8s-Rényi graph model Regular graph model
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—— This work «—  SDP (Penget al., 2010)

«— LowRankAlign (Feizi et al., 2016) —— GNN (Nowak et al., 2018)

e Graphs:n =50, density = 0.2
e Training set: 20000 samples

e Validation and Test sets : 1000 samples
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Comparison FGNN vs GRAMPA

Graphs with avg. degree 50.0 (quantile 10-90%)

10 —— GRAMPA
FGNN_100
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sgma
Overlap as a function of o = /5% for correlated E-R with average degree

50 (number of nodes : 100). Fan et al. (2019)
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Generalization for regular graphs
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Each line corresponds to a model trained at a given noise level and shows
its accuracy across all noise levels.
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Conclusion

e we can deal with symmetries in ML thanks to invariance and
equivariance

e images : geometric invariants - graphs : combinatorial invariants
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Conclusion

e we can deal with symmetries in ML thanks to invariance and
equivariance

e images : geometric invariants - graphs : combinatorial invariants

e when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants

e as a result, we lower the expressive power of our network and practical
GNNs are not universal

e other applications of GNNs in graph theory, combinatorial optimization...

e Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness!

31



Thank You!
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