
Exploiting Graph Invariants in Deep Learning

Marc Lelarge
INRIA, DI/ENS, PSL Research University, PRAIRIE

PRAIRIE 2022 - Janv

Geometric deep learning

(Bronstein et al., 2017) 1

Geometric deep learning

https://geometricdeeplearning.com/

In this talk : Symmetries in Machine Learning

What can be done when trying to learn a task that is known to be invariant
to some group of symmetries ?

2

https://geometricdeeplearning.com/

Geometric deep learning

https://geometricdeeplearning.com/

In this talk : Symmetries in Machine Learning

What can be done when trying to learn a task that is known to be invariant
to some group of symmetries ?

2

https://geometricdeeplearning.com/

Invariance and Equivariance

source : image from Bernhard Kainz

3

Why Invariance and Equivariance?

4

Why Invariance and Equivariance?

taken from Zhang (2019)

5

How to make your algorithm invariant

Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.

From an arbitrary function f , an easy way to construct an invariant version :
1
|T|
∑
t∈T

f (T(I))

so that the learned function fθ is such that

fθ(T(I)) ≈ fθ(I)

6

How to make your algorithm invariant

Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.

From an arbitrary function f , an easy way to construct an invariant version :
1
|T|
∑
t∈T

f (T(I))

so that the learned function fθ is such that

fθ(T(I)) ≈ fθ(I)

6

How to make your algorithm invariant

Motivation for invariant/equivariant algorithms : by restricting the class of
functions we are learning, we lower the complexity of the model and
improve its robustness and generalization.

From an arbitrary function f , an easy way to construct an invariant version :
1
|T|
∑
t∈T

f (T(I))

so that the learned function fθ is such that

fθ(T(I)) ≈ fθ(I)
6

Convolutions from �rst principles

How to build an equivariant layer ?

Th : Shift equivariance + Linear = Convolution

more details at : https:
//dataflowr.github.io/website/modules/extras/Convolutions_first/

Pb with practical CNN : max pooling breaks the equivariance property.

7

https://dataflowr.github.io/website/modules/extras/Convolutions_first/
https://dataflowr.github.io/website/modules/extras/Convolutions_first/

Convolutions from �rst principles

How to build an equivariant layer ?

Th : Shift equivariance + Linear = Convolution

more details at : https:
//dataflowr.github.io/website/modules/extras/Convolutions_first/

Pb with practical CNN : max pooling breaks the equivariance property.

7

https://dataflowr.github.io/website/modules/extras/Convolutions_first/
https://dataflowr.github.io/website/modules/extras/Convolutions_first/

Convolutions from �rst principles

How to build an equivariant layer ?

Th : Shift equivariance + Linear = Convolution

more details at : https:
//dataflowr.github.io/website/modules/extras/Convolutions_first/

Pb with practical CNN : max pooling breaks the equivariance property.

7

https://dataflowr.github.io/website/modules/extras/Convolutions_first/
https://dataflowr.github.io/website/modules/extras/Convolutions_first/

Expressive power of CNNs

To learn a function f that is known to be invariant to some symmetries, we
use linear layers that respect this symmetry. Can such a network
approximate an arbitrary continuous invariant function?

(Yarotsky, 2021)

8

Expressive power of CNNs

To learn a function f that is known to be invariant to some symmetries, we
use linear layers that respect this symmetry. Can such a network
approximate an arbitrary continuous invariant function?

(Yarotsky, 2021)

8

Summary for CNNs

• Symmetries in ML : Invariance and Equivariance
• for CNNs, using equivariant layers does not restrict the Expressive
Power of the network
• in practice, architectures are not invariant and we use other techniques
like data augmentation...

9

Learning with point clouds : PointNet

(Qi et al., 2017)

10

Learning with point clouds : PointNet

(Qi et al., 2017) 10

PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(x1, . . . , xn) 7→ (f (x1), . . . , f (xn))

It is equivariant as
PointNet(xσ(1), . . . , xσ(n)) =

(
f (xσ(1)), . . . , f (xσ(n))

)
for any permutation

σ ∈ Sn.

For n = 2, whatever f , you cannot approximate the following equivariant
function :
(x1, x2) 7→

(x1+x2
2 , x1+x22

)
Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :
(x1, . . . , xn) 7→

(
f (x1,

∑
i Φ(xi), . . . , f (xn,

∑
i Φ(xi))

)
(Zaheer et al., 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/

11

https://dataflowr.github.io/website/modules/extras/invariant_equivariant/
https://dataflowr.github.io/website/modules/extras/invariant_equivariant/

PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(x1, . . . , xn) 7→ (f (x1), . . . , f (xn))

It is equivariant as
PointNet(xσ(1), . . . , xσ(n)) =

(
f (xσ(1)), . . . , f (xσ(n))

)
for any permutation

σ ∈ Sn.

For n = 2, whatever f , you cannot approximate the following equivariant
function :
(x1, x2) 7→

(x1+x2
2 , x1+x22

)
Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :
(x1, . . . , xn) 7→

(
f (x1,

∑
i Φ(xi), . . . , f (xn,

∑
i Φ(xi))

)
(Zaheer et al., 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/

11

https://dataflowr.github.io/website/modules/extras/invariant_equivariant/
https://dataflowr.github.io/website/modules/extras/invariant_equivariant/

PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(x1, . . . , xn) 7→ (f (x1), . . . , f (xn))

It is equivariant as
PointNet(xσ(1), . . . , xσ(n)) =

(
f (xσ(1)), . . . , f (xσ(n))

)
for any permutation

σ ∈ Sn.

For n = 2, whatever f , you cannot approximate the following equivariant
function :
(x1, x2) 7→

(x1+x2
2 , x1+x22

)

Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :
(x1, . . . , xn) 7→

(
f (x1,

∑
i Φ(xi), . . . , f (xn,

∑
i Φ(xi))

)
(Zaheer et al., 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/

11

https://dataflowr.github.io/website/modules/extras/invariant_equivariant/
https://dataflowr.github.io/website/modules/extras/invariant_equivariant/

PointNet is not equivariant universal

PointNet architecture can be abstracted as :
PointNet(x1, . . . , xn) 7→ (f (x1), . . . , f (xn))

It is equivariant as
PointNet(xσ(1), . . . , xσ(n)) =

(
f (xσ(1)), . . . , f (xσ(n))

)
for any permutation

σ ∈ Sn.

For n = 2, whatever f , you cannot approximate the following equivariant
function :
(x1, x2) 7→

(x1+x2
2 , x1+x22

)
Indeed this obstruction is the only one for universality and DeepSets and
PointNetSeg are equivariant universal :
(x1, . . . , xn) 7→

(
f (x1,

∑
i Φ(xi), . . . , f (xn,

∑
i Φ(xi))

)
(Zaheer et al., 2017), for more details https://dataflowr.github.io/
website/modules/extras/invariant_equivariant/

11

https://dataflowr.github.io/website/modules/extras/invariant_equivariant/
https://dataflowr.github.io/website/modules/extras/invariant_equivariant/

Learning with graph symmetries

Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !

12

Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !

12

Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !

12

Why symmetries matter with graphs?

Start with a linear regression : your task is to estimate a linear model
β1x1 + · · ·+ βnxn from noisy observations (x, y).

Q : How many parameters do you need to estimate if you know in addition
that the model is invariant to permutation of the input (x1, . . . , xn) ?

A : there is only one parameter to estimate because invariance implies
β1 = · · · = βn.

Q : a linear regression on graphs : estimate a linear function of the adjacency
matrix in Rn×n, how many parameters to estimate?

A : there are only two parameters to estimate for a linear function
f : Rn×n → R invariant to permutation of the rows and columns :

f (A) = α
∑
i=j

Ai,j + β
∑
i 6=j

Ai,j,

whatever the value of n !

12

Graph isomorphism

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection V1 −→ V2
which preserves edges.

Idea : design a machine learning algorithm whose result does not depend
on the representation of the input.

13

Graph isomorphism

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection V1 −→ V2
which preserves edges.

Idea : design a machine learning algorithm whose result does not depend
on the representation of the input.

13

Invariant and Equivariant GNNs

Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

14

Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

14

Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

14

Practical GNNs are not universal

A �rst example : Message passing GNN (MGNN)

MGNN takes as input a discrete graph G = (V, E) with n nodes and are
de�ned inductively as : h`i ∈ F being the features at layer ` associated with
node i, then

h`+1i = f
(
h`i ,
{{
h`j
}}

j∼i

)
= f0

h`i ,∑
j∼i

f1
(
h`j
) ,

where f or f0 and f1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f , there exists f0 and f1).

15

A �rst example : Message passing GNN (MGNN)

MGNN takes as input a discrete graph G = (V, E) with n nodes and are
de�ned inductively as : h`i ∈ F being the features at layer ` associated with
node i, then

h`+1i = f
(
h`i ,
{{
h`j
}}

j∼i

)
= f0

h`i ,∑
j∼i

f1
(
h`j
) ,

where f or f0 and f1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f , there exists f0 and f1).

15

Xu et al. (2019) : MGNN are as powerful as 2-Weisfeiler-Lehman

For k ≥ 2, k-WL(G) are invariants based on the Weisfeiler-Lehman tests
designed for the graph isomorphism problem.

16

MGNN are not universal

Prop : MGNN are useless on d-regular graphs (without features).

Another example of a problematic pair for MGNN :

17

Learning with (practical i.e. k = 2) FGNN

Better expressive power with FGNN

(Maron et al., 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h`+1i→j = f0

(
h`i→j,

∑
k∈V

f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a �nal invariant/equivariant
reduction layer from Fn

2
to F/Fn.

18

Properties of Folklore GNN (FGNN)

Separation (Maron et al., 2019) : FGL is equivariant and the same power of
separation as 3-WL.

Expressiveness (Azizian and Lelarge, 2020) :
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

Proof : from separation to approximation via a Stone-Weierstrass theorem

19

Alignment of Graphs

Problem : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on
the right).
Task : recover the indices on vertices of graph 2.

20

Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).

21

Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).

22

Result with FGNN

Here are the ’wrong’ matchings or cycles.

23

Result with FGNN

Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.

24

Result with FGNN

Matched edges.

25

Result with FGNN

Green vertices are well paired vertices. Red vertices are errors.

26

A learning algorithm

Learning the graph alignment problem with Siamese FGNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

FGNN

FGNN

• The same FGNN is used for both graphs.
• From the node similarity matrix E1ET2 , we extract a mapping from nodes
of G1 to nodes of G2 (using a LAP solver to get a permutation).

27

Results on synthetic data

• Graphs : n = 50, density = 0.2
• Training set : 20000 samples
• Validation and Test sets : 1000 samples

28

Comparison FGNN vs GRAMPA

Overlap as a function of σ =
√

1−s
1−λ/n for correlated E-R with average degree

50 (number of nodes : 100). Fan et al. (2019)

29

Generalization for regular graphs

Each line corresponds to a model trained at a given noise level and shows
its accuracy across all noise levels.

30

Conclusion

• we can deal with symmetries in ML thanks to invariance and
equivariance
• images : geometric invariants - graphs : combinatorial invariants

• when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants
• as a result, we lower the expressive power of our network and practical
GNNs are not universal
• other applications of GNNs in graph theory, combinatorial optimization...
• Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness !

31

Conclusion

• we can deal with symmetries in ML thanks to invariance and
equivariance
• images : geometric invariants - graphs : combinatorial invariants
• when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants

• as a result, we lower the expressive power of our network and practical
GNNs are not universal
• other applications of GNNs in graph theory, combinatorial optimization...
• Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness !

31

Conclusion

• we can deal with symmetries in ML thanks to invariance and
equivariance
• images : geometric invariants - graphs : combinatorial invariants
• when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants
• as a result, we lower the expressive power of our network and practical
GNNs are not universal

• other applications of GNNs in graph theory, combinatorial optimization...
• Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness !

31

Conclusion

• we can deal with symmetries in ML thanks to invariance and
equivariance
• images : geometric invariants - graphs : combinatorial invariants
• when the group of invariants is huge, data augmentation is not possible
and we need to use architectures that respect these invariants
• as a result, we lower the expressive power of our network and practical
GNNs are not universal
• other applications of GNNs in graph theory, combinatorial optimization...
• Transformers are built with equivariant blocks and positional encoding
is used to recover expressiveness !

31

Thank You!

Références

W. Azizian and M. Lelarge. Expressive power of invariant and equivariant
graph neural networks. arXiv preprint arXiv :2006.15646, 2020.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric
deep learning : going beyond euclidean data. IEEE Signal Processing
Magazine, 34(4) :18–42, 2017.

Z. Fan, C. Mao, Y. Wu, and J. Xu. Spectral graph matching and regularized
quadratic relaxations i : The gaussian model. arXiv preprint
arXiv :1907.08880, 2019.

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful
graph networks. In H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32 : Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 2153–2164, 2019. URL http:
//papers.nips.cc/paper/8488-provably-powerful-graph-networks.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet : Deep learning on point sets
for 3d classi�cation and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660,
2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks ? In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km.

D. Yarotsky. Universal approximations of invariant maps by neural networks.
Constructive Approximation, pages 1–68, 2021.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola. Deep sets. arXiv preprint arXiv :1703.06114, 2017.

R. Zhang. Making convolutional networks shift-invariant again. In
International conference on machine learning, pages 7324–7334. PMLR,
2019.

32

http://papers.nips.cc/paper/8488-provably-powerful-graph-networks
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks
https://openreview.net/forum?id=ryGs6iA5Km

	Learning with graph symmetries
	Invariant and Equivariant GNNs
	Practical GNNs are not universal
	Learning with (practical i.e. k=2) FGNN
	Alignment of Graphs
	A learning algorithm
	Thank You!
	Références

